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On the Bisection Method for Triangles 
By Andrew Adler 

Abstract. Let UVW be a triangle with vertices U, V, and W. It is "bisected" as follows: 
choose a longest edge (say VW) of UVW, and let A be the midpoint of VW. The UVW gives 
birth to two daughter triangles UVA and UWA. Continue this bisection process forever. 

We prove that the infinite family of triangles so obtained falls into finitely many similarity 
classes, and we obtain sharp estimates for the longest jth generation edge. 

1. Introduction. Let UVW be the triangle with vertices U, V, and W. We "bisect" 
triangles as follows: choose a longest edge (say VW) of UVW, and let A be the 
midpoint of VW. Then UVW gives birth to two daughter triangles UVA and UA W. 
So the generation 0 triangle UVW gives rise to two generation 1 triangles. "Bisect" 
these in turn, giving rise to four generation 2 triangles, and so on. So UVW through 
this process gives rise to an infinite family of triangles. This bisection process and a 
generalization to three dimensions have a number of numerical applications; see, 
e.g., [ 1], [ 3], [4]. 

Let m1 be the length of the longest jth generation edge. A bound for the rate of 
convergence of m has been obtained in [2]. Sharp estimates for certain classes of 
triangles have been given in [5]. In this paper we prove that mi - V2 -j/2m0 if j is 
even, and that m - V22-j/2m 0 if j is odd, with equality for equilateral triangles. 
We prove, moreover, the following geometrically interesting fact: the (infinite) 
family of UVW contains only finitely many similarity types. 

Definition. If A is a triangle, then 4p(A) = (area of A)/12(A), where l(A) is the 
length of the longest edge of A. IY1(A) is the collection of even generation descen- 
dants of A, and 1Y1(A) is the collection of odd generation descendants. 

Since our bisection process in particular bisects areas, in order to find out about 
mj, it is enough to know how the dimensionless quantity 41(A) behaves under 
bisection of triangles. Our results will be proved by an induction on 4. It is necessary 
to deal first with acute angled triangles, then with obtuse triangles. The squares of 
side-lengths needed in this paper are all calculated by straightfoward use of the law 
of cosines. 

2. Acute Triangles. Let A = UVW be an acute angled triangle, with VW a longest 
edge. Write 11 UV 11 2 = p, 11 UW 112 = q. For convenience let II VW 112 = 1, and assume 
p - q < 1. Bisect edge VW at A. UW is then the longest edge of UA W. Bisect it at 
B. Then UA is the longest edge of UBA. There are now three different possibilities to 
consider. 
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Possibility 1. UV is a longest edge of UVA. Examination of Figure 1 shows that 
bisection of UAB and of UVA gives rise to triangles similar to already occurring 
triangles, and so (up to similarity) 60l(A) contains only UVW and UAB, while 6j,(A) 
only contains UVA and UAW. 

A 

FIGURE 1 

Since II UA j2 = 4(2p + 2q - 1), 4(UAB) = k(A)/2p + 2q - 1. But since p + q 
> 1 (from the acuteness of A), using elementary linear programming, we find that 
,O(UAB) 2 3+(A), with equality if A is equilateral. It is easy to see that 'P(UVA) and 
4(UAW) are both 2p(A). 

Since A is acute, I A V I-I I A U I|, so if Possibility 1 does not hold, A U is a longest 
edge of UVA. Bisect A U at C. It is not hard to show that A V is a longest edge of 
CVA. Bisect A V at D. We have reached the position illustrated in Figure 2. 

u 

B C 

w A v 

FIGURE 2 
There are two possibilities now left. 
Possibility 2. UV is a longest edge of UVC. Examination of Figure 2 will show that 

further bisection produces triangles similar to already occurring triangles. So (up to 
similarity), OO(l) consists of UVW, UAB, UVC, and CVA, and q1(A) consists of 
UVA, UAW, and CVD. Since UA is a longest edge of UVA, '(2p + 2q - 1) 2 p, 
so q 2 p + '. Elementary linear programming now gives c(UAB) >> 
and k(UVC) > 24(4). Of course k(CVA) - 4(A). It turns out that 1ICVl12 = 
'-(6p -2q + 3). Linear programming now gives 4(CVD) > j4(4). Similarly, we 

find that 4(UVA) > 4(A), and '(UAW) > 2O(A). 
If UV is not the longest edge of UVC, there remains only 
Possibility 3. CV is a longest edge of UVC. So 1 (6p - 2q + 3) 2 p, that is 

q < 3/2 - 5p. Then (up to similarity), FO(L\) consists of UVW, UAB, and S1(UVA), 
while Y1(L\) consists of UAW and "0(UVA). As usual, .(PUAW) >> O(A) Since 
q< 3/2 - 5p, linear programming gives 2p + 2q - 1< 6 . So 4(UAB) >> 
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while 4(UVA)> >4(A). So UVA is much "fatter" than A. This enables us to push 
through an induction. 

LEMMA 1. Let. A be an acute triangle. Then the family of A contains only finitely 
many similarity types. If F is in 6VT(A), (rf) > 1 o(A). If F is in 61(A), p(r) ) 

Proof. We show that if our assertions hold whenever p(A) > (3)n, they hold 
whenever 4?(A) > (3)n+1. So suppose A = UVW is acute and 4o(A) > (3)n+1. If A 

satisfies Possibility 1 or Possibility 2, then, by our earlier calculations, A certainly 
satisfies our lemma. So suppose that A falls under Possibility 3. The elements of 

F1(A) are, up to similarity, UA W (and p(UA W) ? 2p(A)) together with 60(UVA). 
But since 4(UVA) > 50(A), by induction assumption UVA satisfies our lemma, so if 
r is in 60(UVA), +(r') 1 j4(UVA) > 54p(A) > p(A). The same sort of calculation 
shows that under Possibility 3, if F is in 6A(l), +(r1) ?> 3 p(A), indeed 4(41) > 5 (A). 
This completes the induction. 

The inequalities for 4 are sharp, for if A is equilateral, no improvement is possible. 
One cannot expect to make significant improvements on estimates for 6T(A). But 
our proof shows that for the "general" acute triangle (Possibility 3), if F is in %0(A), 

+ > 6( 

3. Obtuse Triangles. Suppose now we are "bisecting" a triangle A = UVW, where 
as usual iIVW 1 2 = 1, II UW 1 2 = q, II UV I2 = p, p S q < 1, and where the angle 
VUW is > 900. Bisect VW at A. Then UW is the longest edge of lAUA W. Bisect it at 
B (see Figure 1). 

LEMMA 2. If A is obtuse, the family of A contains only finitely many similarity types. 
If F is in 6R(A), +(r) > 4(A). If F is in %(A), +(r) > 31(A). 

Proof. Let 2 X < 1. We prove that if our result holds for all obtuse triangles A 
such that the smallest angle of A has cosine s xI and such that 4 (A) > An, then the 
result holds for all such A with 4(A) > + 1. So suppose that 4(A) > Xn+1, and that 
A has smallest angle a, where cos2 a X A. If the angle BA U (= A UV) is > 900, there 
is no problem. For it is easy to see that all angles of triangles UAB, UVA are > a. 
But 

O(1UAB) 1( ) > 1( 0) > 2c. 
q cos2 a 

Also p(UVA) = 2(lA) > 2X7+1 > XA since X > 2. Now 61(A) consists, up to simi- 
larity, of UA W, Y1(UAB), and SFO(UVA). By induction assumption, if F is in 
'T1(UAB), then +(r1) ,> 4(UAB) > 24(A), while if F is in Yo(UVA), +(f) 
> 3 ?(UVA) = 2p(A) > l p(A). Elements of 15-0(A) are dealt with in the same way. 

So it remains to see what happens if the angle BA U is - 900. If UV is the longest 
edge of UVA, the family of A has at most four similarity types, and a quick 
computation yields the result. Otherwise, 4(UVA) = 2(1A), and of course 4(UAB) 
> (4A), and our result follows quickly from Lemma 1. 

The estimate for 6F(lA) cannot be significantly improved. But by a closer analysis 
of the possibilities that arise when the angle UAB is acute, one can show that in fact 
if F is in6%(A), (rF) > +(A). 
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4. Summary, Problems. By combining Lemma 1, Lemma 2, and the fact that area 
goes down by a factor of 2 each generation we obtain: 

THEOREM. Under the bisection process, the family of a triangle falls into finitely many 
similarity classes. If j is even, m ? Vs 2-j/2m0. If j is odd, mj s VF22j/2mO. 

Both estimates are sharp, for we have equality when the triangle is equilateral. If 
the starting triangle is far from being equilateral, the bounds for m1 whenj is even 
can be improved. By examining the details of the proof, one can find an upper 
bound for the number of similarity types in the family of A, say as a function of 
p(A). But there appears to be nothing very interesting left to do for triangles. 

But one can raise similar problems in a much more general setting. Let 
A1, A2,... ,A be a configuration of n + 1 points in d-dimensional space. Suppose 
11A0-A 1I2IIA,-A 1A for all i, j. Then the configuration gives birth to two 
daughter configurations AO, (Ao + A1)/2, A2'. . .A, and (Ao + Al)/2, 
Al, A2'.. A,. One can define m1 as for triangles and ask about the behavior of mj. 
It seems reasonable to conjecture that mj = 0(2-1/n). One can make the even 
stronger conjecture that up to similarity any configuration has a finite family. 

Already for four points in general position in 3-dimensional space, the problems 
seem difficult. We have a proof of the "finite family" conjecture for certain classes 
of tetrahedra. For example, it turns out that if a tetrahedron is nearly equilateral and 
the second largest edge is opposite the longest edge, then the family of the 
tetrahedron falls into < 37 similarity classes. (The condition "nearly equilateral" is a 
little complicated to describe briefly, but, for example, it is satisfied if all edge 
lengths are within 5% of each other.) 
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